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We present a numerical grid generation method in which the
Cartesian coordinate functions are expanded in tensor product B-spline
basis functions and collocation is used to selve the elliptic grid genera-
tion equations. The efficiency of the method derives from the fact that
the smoothness of the basis functions is exploited to compute fine grids
in the physical domain over a coarse set of knots in the computational
domain. We farmulate the tensor product B-spline method, investigate
its computational complexity and compare its performance to the finite
difference method for several 2D grids. We show that for comparable
grids the computational cost of the tensor product B-spline method is
less than the cost of the finite difference method.  © 1993 Academic
Press, Inc.

1, INTRODUCTION

We present a numerical grid generation method in which
the Cartesian coordinate functions are expanded in tensor

product B-spline basis functions and collocation is used to -

solve the elliptic grid generation equations. We describe
the implementation of the method in a multi-block grid
generation code and compare its performance to that of
the usual finite difference method.

The basic idea of the method is to represent the Cartesian
coordinate functions for a grid in the physical domain as a
sum of tensor product B-spline basis functions defined on a
rectangular grid of knots in the computational domain. The
tensor product B-spline basis functions are constructed so
that the basis functions and their first partials are con-
tinuous on the computational domain. The coordinate
functions inherit this smoothness: a grid computed by
evaluating the coordinate functions along constant
parameter lines leads to smooth grid lines with smoothly
varying tangents. The expansion coefficients for the coor-
dinate functions are computed by solving the elliptic grid
generalion equations using simple collocation. This assures
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that the computed grid has the smoothness and resolution
expected for an elliptic grid with appropriate control. The
collocation equations are solved by an iterative solution
method analogous to the solution method used for the finite
difference method. An important result of the formulation is
that the number of collocation equations is equal to the
number of (distinct) interior knots for the tensor product
B-spline basis functions. This is to be compared to the finite
difference method where the number of finite difference
equations is equal to the number of interior grid points.
Thus it is possible to reduce the computational cost of the
tensor product B-spline method with respect to the finite
difference method simply by using fewer knots than grid
points. In effect, a fine grid in the physical domain is
obtained by constructing a smooth expansion of the
coordinate functions on a coarse grid of knots in the
computational domain. The expected reduction in
computational cost is partially offset by the increased
complexity of the collocation equations versus the finite
difference equations.

In the following sections, we formulate the tensor product
B-spline method, investigate its computational complexity
and compare its performance to the finite difference method
for several 2D grids. For the grid generation problems
studied, we show that fine grids comparable in smoothness
to fine grids computed by the finite difference method can be
computed over a coarse set of knots, We show that for
comparable grids the computational cost of the tensor
product B-spline method is less than the cost of the finite
difference method.

2. ELLIPTIC GRID GENERATION

One of the commonly used numerical grid generation
techniques is the elliptic grid generation method. It is a
differential equation method, where the grid is computed
as the discrete solution of an eiliptic partial differential
equation on the physical domain [3,4]. Usually, the
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boundary conditions are formuliated to generate boundary
conforming grids, where the boundary of the physical
domain is composed of coordinate surfaces. For such grids,
numerical generation of the grid is most conveniently
performed by transforming the gencrating equation into
a rectangular computational domain. In the following
discussion, we briefly introduce the gencrating equations
and the finite difference method commonly used for elliptic
grid generation. We also establish some notation needed for
the formulation of the tensor product B-spline method.

2.1. Elliptic Grid Generation Equations

We consider a 3D physical domain D with a curvilinear
coordinate map (&'(-)) mapping D onto the 3D computa-
ttonal domain I*= {{)}=[0,1]x[0,1}x[0, 1] such
that (£'(-)) is continuous and has nonzero Jacobian on the
interior of D. The curvilinear coordinate functions £( - ) are
the components of (£(-)}. Since the Jacobian of (&(.)} is
non-zero on the interior of P, the Cartesian coordinate map
{x(-)) is deftned on J* as the inverse of {£%(-}). The
Cartesian coordinate functions x(-) are the components
of (x'{-}).

For a domain D, the commonly used Poisson generating
system with control of the grid point distribution,
transformed to I*, is given by

3 3
Tt T 0 1)

i=1

c::
n[vju

In conjunction with the condition that the boundary of I°
map onto the boundary of D, (1) defines a well-posed
elliptic boundary value problem on 7* for the Cartesian
coordinate map (x’(-})

2.2, Finite Difference Method

For the coordinate &', we define n, equally spaced points
P on the interval [0, 1]

, Ti—1i

= . =1 .1, 2

P S @)
We define the n,n,#; computational grid points Py . for

I? as the cross-product of the points on the intervals [0, 1]
for coordinates ¢’ defined in (2) as

1
Pizfzfs_(Pn’ fz’P ) (3)
We define the n, #,n, physical grid points Pm .., for D as the
images of the computatlonal grid points P, .. under the
Cartesian coordinate map (x{-)) as
PTDU:;,\')_ (.XJ(Pi‘n“) Z(Pi-,qtg) 3(P£§t2'(3)) (4)

In the following discussion, the notation [ -],,.,., indicates
that the function inside the brackets is evaluated at the com-
putational grid point PrlT2T3 In particular, the coordinates
of the physical grid points Prlrm are denoted by [x] S

To derive the finite difference equations, we write the
difference formulas for {x%]. ., and [x}.],,.,., at the
interior computational grid points in the form (convenient
for later comparison with the tensor product B-spline
formulation)

2 Dy, x (3)
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where the indices 1, =2, ..., n,— 1, the indices v, range over

the values —1,0, |, the indices o.=1,+v, and the coef-
ficients D} ., and D} are defined in Fig 1 and Fig. 2,
respectively.

Substituting (5) and (6) into the elliptic grid generation
equations (1), we obtain the finite difference equations
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the indices 7,=2, .., n,— 1, the indices v, range over the

values — 1,0, 1, the indices ¢,= 1,4+ v, and the coefficients
Dl .., and DY are defined in Fig. | and Fig. 2, respec-
tively,

L D,

Dl—l,o,o = ~1/(2h)
D-ll—l,Cl&: +1/(2h1)
Dﬁdg —1/(2h2)
Df 410 = +1/(2hz)
Doo 1= 1/(2h3)
Dyo 1 = +1/{2h3)
D‘_L‘?EL_ 0, otherwise

FIG. 1. Coefficients D"
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T ]
Dypo = =2/(~i ki) |
DYoo= D0 = 4+1/(h1h1)
Do = —2/(haha)
D\, = DB, o = +1/(hsha)
Doo = —2/(hsha)
Dp 1 = D841 = +1/(h3hs)
D}kgl-ln—D 1+|0—D+1_1,0 )
DU e = D¥iio = D% 1o = +1/(4hihs)
DZy oy =D = DF oy = DF 4 = —1/(8hshs)
D =08 1o = -D_gf+1,+1 = Dy, 1 = +1/(4hahs)
)
)

—1/(4h ks
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D—l e 0

D+1,+1io =

Dilllnil = Dill,g¢1 = D-ﬂ 0,~1 = D]-:i0+1 = —1{{dhsh
D3-11.0,+1 = DZ]],O,-I. = D! 310 1 = +1/(4k3tn
Djl

“eyquy

'D+10+1

= 0, otherwise

FIG. 2. Coeffigients D~

vy

for second partials,

This derivation leads to (n, —2)n,— 2)(ny— 2) finite
difference equations on J* for the (n;, ~2)n, —2)(n;—2)
unknown coordinales of the physical grid points in the inte-
rior of D. An iterative method is required to solve the system
of finite difierence equations because the equations are
quasi-linear in the coordinates of the interior physical grid
points. The solution method commonly used may be
described as an ADI method with line SOR, which sweeps
over lines of computational grid points for each coordinate
direction and updates the coordinates of the corresponding
phystcal grid points. The corrections to the coordinates are
computed by solving a systemn of equations derived from the
finite difference equations for the line of computational grid
points. We briefly describe the calculations for a sweep over
t,-lines of computational grid points.

A t,-line consists of a line of computational grid points on
which 1, varies with 2< 1, €n, — 1, ty 18 fixed with 2 < 1, €
n,— 1 and 7, is fixed with 2 < 13 <n, - 1. A sweep over 7;-
lines of computational grid peints consists of all the 7,-lines
where the fixed values of 1, and t, vary over their indicated
ranges. For each line in the sweep, the coordinates of the
physical grid points corresponding to the line are corrected
as

[

[x!]‘r11:21‘3+ [6)(‘,]?11:213’ (10)

where the correction terms [8x’ 1,0y, satisfy
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the indices 7, are the indices of a point on the 1,-line, the
indices v, range over the values —1, 0, 1, the indices o, =

7,4 v,, and the superscript (*) indicates that the most recent
value of the coordinates are used in the sum.

The resulting system of », —2 linear equations defining
the n, —2 correction terms for a t,-line has tridiagonal
structure and is well conditioned. It may be solved for the
correction terms with a standard tridiagonal solver such as
the LINPACK subroutine SGTSL.

3. TENSOR PRODUCT B-SPLINE METHOD

In the foliowing discussion we define the B-spline basis
functions on I” and usc them to specily the representation of
the Cartesian coordinate functions on I° Next we show
how the boundary conditions for the elliptic grid generation
equations are applied on I°. Then we derive the collocation
equations by requiring that the B-spline representation of
the Cartesian coordinate functions satisfy the elliptic grid
generation equations at collocation points defined on I°.
Finally, we present the ADI method used to solve the
collocation equations.

3.1. Tensor Product B-Spiine Representation

To define the B-spline basis functions for the coordinate
& we gdivide the interval [0, 1] into ], intervals of equal
length and define the set of I, + t equally spaced breakpoints
5,, as the endpoints of the intervals

(12)

We define the set of knots by placing &; knots at each
interior breakpoint and k;+ 2 knots at the initial and final
breakpoints, which leads to the set n, + m; knots tj,j, where

n,=kJd;+2, {13)
m=k,+2, (14)
and
S’i (3r': 1& uey mi)’
0= 4 8\ L o i 1) (Bi=m,;+1,.,n), {15)
si’-%l (ﬁj=n,-+1,..., n,-‘i-m,-)-

We define the B-spline basis functions for the coordinate £*
as the n, normalized B-spline basis functions U of order m;,
on the interval [0, 1] for the sct of knots ¢}, specified in (15)
(1]. These B-spline basis functions form a basis for the
linear space of piecewise polynomials on the interval [0, 1]
of degree m,— 1 with m, —k,=2 continuity conditions at
the interior breakpoints, i.e., the B-spline basis functions
and their first derivatives are continuous at the interior
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breakpoints. The B-spline basis functions also have small
support, ie., U’ is zero outside the interval [t m)-
We define the 1 n,#, tensor product B- splme basis func-
tions on 7* as products of the B-spline basis functions U
Usioser = Uiy €', 8% E) = U L (L UL(E) U (2.
(16)

We use the tensor product B-splines U, ,, .. defined in {16)
to construct a parametric representation of the Cartesian
coordinate functions x’ on the computational domain /72,

= ¥ 400Uy (17)

g\ a2a;3

where the indices ¢,=1, .., n; and the n, n,n, expansion
parameters 47 are to be determined.

With this representation, the Cartesian coordinate func-
tions inherit the smoothness properties of the B-gpline basis
functions U/’ ;i.e., the Cartesian coordinate functions x'and
all their first partial derivatives are continuous on 7> The
result of this fact is that a grid computed by evaluating the
Cartesian cooerdinate functions along constant parameter
lines leads to smooth grid lines with smoothly varying
tangents. Another result of the construction is that all the
second partials of the Cartesian coordinate functions exist
and are continuous on /°, except possibly at points that
correspond to break points for the B-spline basis functions.
Thus all the terms in the eiliptic grid generation equations
(1) may be evaluated on /* and coliocation may be used to
adjust the expansion coefficients A’ in (17) to obtain an
approximate solution.

In the following discussion, we will refer to the expansion
parameters for which 2<t,<n;,— 1 as interior expansion
parameters and all the rest as boundary expansion
parameters.

Ll RpAck]

3.2. Boundary Condition Equations

The parametric representation of the Cartesian coor-
dinate functions defined in (17) must agree with the
specification the Cartesian coordinate functions on the faces
of I* (defined by fixing one of the curvilinear coordinates &'
to be zero or one). We obtain the boundary condition
equations

2 AUIU2U3
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Y AL UL (&) ULE)UI(0)
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=3 FiS UL E ULER, (23)
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where the indices o, —1 .. 1; and the boundary inter-

polation parameters 1, f02., forns Fovas Sovors oves
are computed by using the B-gpline basis functions U,
to interpolate the functions specifying the Cartesian
coordinate functions x' on the faces of /°.

We note that 2a,n;+ 2n.n, + 2nn, boundary inter-
polation parameters appear in the specification of the
representation of the block faces in (18) to (23). However,
these boundary interpolation parameters are not inde-
pendent because the faces must be consistent along the
block edges and at block corners. Thus the boundary inter-
polation parameters satisfy 4#; + 4n, + 4n, — 8 consistency
condittons.

We can further reduce the boundary condition equations
derived above by applying first the orthogonality properties
and then the small support of the B-spline basis functions

Uy, apay 1O ODt2IN
ZAama; ()=, UNO)=,10  (24)
ZA(,,WU‘,,(I) fona Un() =152, (25)
ZA,,,WUQ(O) AL 1, U0 =15, (26)
ZAG,W, (D=4l UL =7, (2D
ZAU,W H0)=4l U0, (28)
ZAW,WU) PR AR S DY SRR (29)

where the indices 6, =1, ..., n; and the indices &,=1, ..., n,.

This derivation leads to 2n,n,+ 2nn, + 2n,n, linear
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boundary conditions equations on the computational
domain I® for the 2m,ny+2nn, + 20,0, — 40, —4n, —
4n,+ 8 boundary expansion parameters. However, this
redundant set of equations is consistent because the bound-
ary interpolation parameters satisfy the 4n, +4n, +4n,—8
consistency conditions discussed above.

3.3. Collocation Equations

For the coordinate &', we assign k; points to each of the
{; intervals defined in Section 3.1. As suggested in [17, the
points are distributed in each interval according to the roots
of the k;th Legendre polynomial. This construction gives
kl;=n;—2 points P’ _for the interval [0, 1]

Plo= (sl st pldsh  — i), (30)
where
=k~ D+x, 1<a<l, 1<k,<k;, (31)

and the p) are the roots of the &,th Legendre polynomial.
We define the (n, —2)(n, ~2)}n5~ 2) collocation points
Pl ., on [* as the cross-product of the points on the

intervals [0, 1] for the coordinates ¢ defined in (30)

Pl =P, PL P}

ntaras Mot (32)
In the following discussion, the notation [ -], ..., indicates
that the function inside the brackets is evaluated at the
collocation point P! _ . In particular, the Cartesian
coordinates of the collocation points P are denoted
by [x'1 00, To derive the collocation equations, we first

differentiate (17) to write formulas for [x‘:f,]tl,z;J and
[xE4:]4, 00, at the collocation points
! - : .
[ng']r;rzzg”_ Z Aaga—za_;[(Urnaga‘g)é*jr,rzzp (33)
V¥
- ! -
[x‘é"ﬁ"]hflfs_ Z Arrl5203[(Uamza:,){’éw‘]utzr;s (34)

Vivayy

where the indices 1,=1, .., #;,—~ 2, the indices v,=1, .., m;
and the indices o, =k, (a;,— 1)+ v, for t,=k{a;— 1} +k;
with 1 o, </, and 1€k, <k, We have used the small
support of the B-spline basis functions U, ,,,, to reduce the
number of terms in the sums in (33) and (34) from # n,n;
to mtymyms. _

Substituting (33) and (34) into the elliptic grid generation
equations (1), we obtain the collocation equations
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i=1 j=1

3
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the indices 1,=1, .., u,— 2, the indices v,= 1, ..., m, and the
indices a,=k;{x,—1}+v, for t,=k(e;—1}+x; with
l<a,<land 1 €k, <k,

This derivation leads to (n; —2){#, —2)(n,—2) collo-
cation equations on I for the (n,—2)(n;—2)(n;—2)
unknown interior expansion parameters. An iterative
method is required to solve the system of collocation equa-
tions because the equations are quasi-linear in the interior
expansion parameters. The solution method we use, which
is similar to the ADI method with line SOR described in
Section 2.2 for the finite difference method, sweeps over
lines of collocation points for each coordinate direction
an updates corresponding lines of interior expansion
parameters. The corrections to the expansion parameters
are computed by solving a system of equations derived from
the collocation eguations for the line of collocation points.
We briefly describe the calculations for a sweep over 7,-lines
of collocation points.

A 1,-line consists of a line of collocation points on which
t,varies with 1 <1, €n, — 2, 1yisfixed with 1 € 1, <0, — 2
and T, is fixed with [ <7, <n;— 2, and the corresponding
@-ling consists of a line of expansion parameters on which
o, varieswith2<o,<n, — 1,9, =1, + 1, isfixed, and o, =
13+ 1 is fixed. A sweep over 1,-lines of collocation points
consists of all the t,-lines, where the fixed values of 7, and
14 vary over their indicated ranges. For each line in the
sweep over t,-lines of collocation points, the corresponding
g,;-line of expansion parameters is corrected as

! — a! !
Aalagrrg_Aolazag+5Acr|aza33 (38)
where the correction terms dA4/ _  satisly
{
Z [B ::Ti;{k 1,63+ IE’Am,r:+ L+ 1
¥1
HEY
= - Z [B]:-ig:iAm;zaj’ (39)
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the indices 7, are the indices of a point on the 7,-line, the
indices v,=1, ... m,, the indices o,=k{a,— 1)+ v, for
=k {e,~1)+x;, with 1 €a;</;, and 1 <x,<k,, and the
superscript () indicates that the most recent value of the
interior expansion parameters are used in the sum.

The resulting system of #, — 2 linear equations defining
the n, — 2 correction terms for the o,-line of interior expan-
sion parameters corresponding to a t,-line of collocation
point has a banded structure, with bandwidth &, and is well
conditioned. It may be solved for the correction terms with
a standard band solver such as the LINPACK subroutines
SGBCO or SGBFA. We note that for £,=1 the system is
tridiagonal and can be solved with a standard tridiagonal
solver such as the LINPACK subroutine SGTSL.

4. APPLICATION TO 2D GRIDS

To test the tensor product B-spling method and compare
its performance to the finite difference method, we
implemented the tensor product B-spline method in the
author’s 2D multi-block grid code [2]. The code uses a two-
stage iteration procedure to compute the grid block by

A Method | N | N | Gud | Block | Block
Potats ¢ Itec | CPU | CPU | CPU/pt

FDE | 3720 | 70 | 85.95 ) 83.77 | .00032
B-Spline | 256 | 10 ;05.77 | 03.97 | 00155
B[ Mothod | N | N | Grd | Block | Block
Points [ Iter | CPU | CPU { CPU/pt

FDE | 3566 | 70 |84.05 | 78.50 | 00031
B-Spline [ 5t2 | t5 [ 2067 [ 11.76 | 00153
Cl Mabod T & N | Grid | Block | Block
Points | Iter | CPU | CPU [ CPU/pt

FDE | 9996 [ 100 | 326.46 | 315.54 | .00032
B-Spline | 1920 | 40 | 144.24 | 119.91 | 00155

FIG. 3. Timing data for tensor product B-spline method: {(a) C-grid
for NACA-0012 Airfoil—3 blocks; (b) C-grid for NACA-0012 Aitfoil—6
blocks; (c) O-grid for Model 350 Fighter—d blocks.
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block so that the grid for each block satisfies the Poisson

generaling system (1) and prescribed block interface condi-

tions. Interface blocks, which overlap pairs of grid blocks,

are introduced to enforce the block interface conditions. In

the inner iteration, the boundaries of all grid blocks and
interface blocks are fixed and their grids are updated using
the AD! method descrived above for either the finite
difference method or the tensor product B-gpline method.
In the outer iteration, all grid block and interface block
boundaries are updated to satisfy the block interface condi-
tions. This procedure assures smooth block interfaces and
generally results in smooth grid lines across block interfaces,
although slope discontinuities are possible, e.g., Fig. 6a. The
control terms Q7 in (1) are initialized block by block by first
setting the control terms on the boundary of each block to
values consistent with the initial grid points specified on the
block boundary and then extending the control terms into
the interior of the block by transfinite interpolation
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FIG. 4. C-grid for NACA-0012 Airfoil: (a) Three block finite
difference grid; (b} block boundaries.
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[3, p. 2267, Setting the control terms in this manner leads to
multi-block grids which are dense near domain boundaries
that are highly curved. The grid code does not provide for
any iterative adjustment of the control terms during the
calculation of the grid to control such grid features as the
orthogonality of grid lines at the domain boundary or the
skewness of grid cells, e.g., Fig. 6b. Aithough the author’s
grid code has some limitations, it provided a test bed where
we could compare the performance of similar implementa-
tions of the finite difference and tensor product B-spline
methods. We selected three grid generation problems for the
comparisons: a three block C-grid for the NACA-0012
Airfoil, a six block C-grid for the NACA-0012 Airfoil, and
a four block O-grid for a cross section of the Model 350
Fighter.

The results of the three tests are summarized in Fig. 3,
which compares the computational cost of obtaining elliptic

FI1G. 5. C-grid for NACA-0012 Airfoil: (a) Three block tensor product
B-spline grid; (b) Block boundaries.

grids of similar smoothness and resolution with the two
methods. The first column indicates the method, the second
column gives the number of interior grid points for the finite
difference method and the number of collocation points for
the tensor product B-spline method, the third column gives
the number of iterations required to generate the final grids,
the fourth column gives the total CPU seconds required to
generate the final grids, the fifth column gives the total CPU
seconds spent in solving the finite difference or collocation
equations and the sixth column gives the average CPU
seconds per interior grid point per iteration for the finite
difference method and the average CPU seconds per
collocation point per iteration for the tensor product
B-spline method. Using the data in Figure 3, we can
compare the finite difference and tensor product B-spline
methods, as implemented in the author’s 2D muiti-block
grid code, with respect Lo computational complexity, block
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FIG. 6. C-grid for NACA-0012 Airfoil: (a) Fine grid computed from
tensor product B-spline grid; (b) Detail of fine grid.
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interface processing overhead and overall computational
cost of obtaining elliptic grids of similar smoothness and
resolution.

The data in the last column, which measures the
computational compiexity of the two methods, shows that
on average the tensor product B-spline method (using
quadratic B-splines) is 4.84 times as expensive as the finite
difference method.

The difference between the CPU times given in columns
four and five is the amount of CPU time spent processing
block interfaces. For the finite difference method, where the
number of grid points per block was large in the three tests,
the cost of computing the interface grids was a small part of
the total cost of computing the final grid. For the tensor
product B-spline method, however, where the number of
collocation points per block was low in the three tests, the
cost of computing the interface grids was a significant
fraction of the total cost of computing the final grid.
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FIG. 7. C-grid for NACA-0012 Airfoil; {a) Six block finite difference
grid; (b) Block boundaries.

The CPU times in the fourth column show that an overall
speedup of the tensor product B-spline method with respect
the finite difference method was obtained in all three tests,
in spite of the tensor product B-spline method’s higher com-
putational complexity and block interface overhead costs.
The best speedup of 14.9 was obtained in the first test, where
the number of collocation points was smallest with respect
to the number of interfor grid points. More modest
speedups of 4.1 and 2.3, respectively, were obtained in the
second and third tests, where additional collocation points
were used to adequately represent complex domain bound-
aries. The results of the three grid generation problems are
described more fully in the following paragraphs,

41. C-Grid for NACA-O012 Airfoil; Three Blocks

Figures 4 to 6 illustrate the first study in which we focused
solely with the speed of the tensor product B-spline method.

—

FIG. 8. C-grid for NACA-0012 Airfoil: (a) Six block tensor product
B-spline grid; (b) Block boundaries.



TENSOR PRODUCT B-SPLINE METHOD

The objective of the test was to compute a C-grid for the
NACA-0012 Airfoil using the tensor product B-spline
method with the coarsest possible grid of knots that gives a
fine grid comparable to a fine grid computed by the finite
difference method.

Figure 4a shows a C-grid for the NACA-0012 airfoil com-
puted with our multi-block grid code using three blocks and
the finite difference method. The computed grid is a smooth
elliptic grid with high resolution near the airfoil surface.
Figure 4b shows the block boundaries in the computed grid.

Figure 5a shows a C-grid computed with our muiti-block
grid code using three blocks and the tensor product B-spline
method. Quadratic B-splines (k;=1) were used for all
blocks. The grid lines in the figure are lines on which one
coordinate has a constant value equal to the value of a
collocation point for the coordinate. Thus the grid points in
the figure are the points at which the elliptic grid generation
equations were solved by the tensor product B-spline
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FIG. 9. C-grid for NACA-0012 Airfoil: {a) Fine grid computed from
tensor product B-spline grid; {b) Detail of fine grid.
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method; we call this the B-spline grid. Figure 5b shows the
block boundaries in the computed grid.

Figure 6a shows the C-grid computed by evaluating
the tensor product B-spline solution at equally spaced
parameter values to obtain the same number of grid points
as in the finite difference grid. Figure 6b shows an expanded
view of the C-grid near the airfoil surface. Note that the fine
grid computed from the coarse B-spline grid is as smooth
and well resolved as the finite difference grid.

4.2 C-Grid for NACA-0012 Airfoil;, Six Blocks

Figures 7 to 10 illustrate the second study in which we
considered the resolution of the airfoil geometry in addition
to the speed of the method. The blocking strategy we
adopted to satisfy this additional requirement was to use an
inner and outer set of blocks. A sufficiently fine grid of knots
was used in the inner blocks to resolve the airfoil geometry
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FIG. 10. C-grid for NACA-0012 Airfoil: (a) Fine inner grid, coarse
outer grid; (b) Detail of inner grid.
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and a coarse grid of knots was used in the outer blocks.
The objective of the test was to compute a C-grid for the
NACA-0012 Airfoil using the tensor product B-spline
method with the coarsest possible grid of knots that gives a
fine grid comparable to a fine grid computed by the finite
difference method and resolves the airfoil geometry.

Figure 7a shows a C-grid for the NACA-0012 airfoil com-
puted with our multi-block grid code using six blocks and
the finite difference method. The computed grid is a smooth
elliptic grid with high resolution near the airfoil surface
and is nearly identical with the C-grid obtained with
three blocks in the first study. Figure 7b shows the block
boundaries in the computed grid.

Figure 8a shows the B-spline grid computed with our
multi-block grid code using six blocks and the tensor
product B-spiine method. Quadratic B-splines (&, = 1) wcre
used for all blocks. Figure b shows the block boundaries in
the computed grid.

Figure 9a shows the C-grid computed by evaluating
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FIG. 11. O-grid for Model 350 Fighter: (a) Four block finite difference
grid; (b} Block boundaries.

the tensor product B-spline solution at equally spaced
parameter values {0 obtain the same number of grid points
as in the finite difference grid. Figure 9b shows an expanded
view of the C-grid near the airfoil surface. Note that the fine
grid computed from the coarse B-spline grid is as smooth
and well resolved as the finite difference grid.

Figure 102 shows the C-grid computed by evaluating the
tensor product B-spline solution at different parameter
spacings in the inner and outer blocks. For the inner blocks,
the tensor product B-spline solution is evaluated at equally
spaced parameter values to obtain the same number of grid
points as in the finite difference grid. For the outer blocks
the parameter spacing is doubled to obtain one-half the
number of grid points as in the finite difference grid.
Figure 10b shows an expanded view of the C-grid near the
airfoil surface. These figures iliustrate an important advan-
tage the tensor product B-spline method has over the finite
difference method. Different grid densities can be obtained
in the blocks defining a grid simply by evaluating the

FIG. 12. O-grid for Model 350 Fighter: (a} Four block tensor product
B-spline grid; (b} Block boundaries.
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coordinate functions at different densities in the blocks’ computed with our multi-block grid code using four blocks
computational domains. As shown in the figure smooth and the finite difference method. The computed grid is a

block boundaries are still obtained. smooth elliptic grid with high resolution near the surface of
the fighter. Figure 11b shows the block boundaries in the
4.3. O-Grid for Model 350 Fighter: Four Blocks computed grid.

Figure 12a shows the B-spline grid computed with our
Figures 11 to 14 illustrate the third study in which we multi-block grid code using four blocks and the tensor
considered the resolution of a very complex domain bound-  product B-spline method. A detailed representation of the
ary in addition to the speed of the method. We adopted a  cross-section boundary was obtained by using a large num-
blocking strategy similar to that for the airfoil case. A suf~-  ber of intervals for the coordinate of the inner block which
ficiently fine grid of knots was used in the inner blocks to  follows the cross-section boundary. Quadratic B-splines
resolve the fighter geometry and a coarse grid of knots was (&, = 1) were used for all blocks. Figure {2b shows the biock
used in the outer blocks. The objective of the test was to  boundaries in the computed grid.
compute an O-grid for the Model 350 Fighter using the Figure 13a shows the O-grid computed by evaluating
tensor product B-spline method with the coarsest possible the tensor product B-spline solution at equally spaced
grid of knots that gives a fine grid comparable to a fine grid  parameter values to obtain the same number of grid points
computed by the finite difference method and resolves the as in the finite difference grid. Figure 13b shows an
fighter geometry. expanded view of the O-grid near the fighter surface. Note
Figure 11 shows an O-grid for the Model 350 Fighter that the fine grid computed from the coarse B-spline grid is
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FIG. 13, O-grid for Model 350 Fighter: {a) Fine grid computed from FIG. 14. O-grid for Model 350 Fighter: (a) Fine inner grid, coarse
tensor preduct B-spline grid; (b) Detail of fine grid. outer grid; (b) Detail of inner grid.
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as smooth and well resolved as the finite difference grid and
gives an accurate representation of the fighter boundary.

Figure [4a shows the O-grid computed by evaluating the
tensor product B-spline solution at different parameter
spacings in the inner and outer blocks. For the inner blocks,
the tensor product B-spline solution is evaluated at equally
spaced parameter values to obtain the same number of grid
peints as in the finite difference grid. For the outer blocks
the parameter spacing is doubled to obtain one-half the
number of grid points as in the finite difference grid.
Figure 14b shows an expanded view of thé O-grid near the
fighter surface. These figures illustrate again that different
grid densities can be obtained in the blocks defining a grid
simply by evaluating the coordinate functions at different
densities in the blocks’ computational domains. As shown in
the figure smooth block boundaries are still obtained, even
when knot densities change across the boundaries.

5. CONCLUSIONS

We have presented a tensor product B-spiine method for
elliptic grid generation and compared its performance to the
fimite difference method in the context of a muiti-block grid

generation code. We verified that fine grids can be com-
puted with the tensor product B-spline method over a
coarse set of knots and that the resulting grids have resolu-
tion and smoothness comparable to fine grids computed
with the finite difference method. We showed that for such
grids, the tensor product B-spline method was up to
15 times faster than the finite difference method. We
demonstrated an effective strategy for using the tensor
product B-spline method for domains with complex bound-
arics. We demonstrated that smooth block boundaries can
be obtained even when knot densities change across block
boundaries.

REFERENCES

. C. de Boor, “A Practical Guide to Splines,” in dpplied Mathematicu!
Sciences, Vol. 27 (Springer-Verlag, New York/Berlin, 1978).

2. J. W, Manke, Technical Report ETA-TR-66, Boeing Computer Services
Co., December 1987 (unpublished ).

3. J. F. Thompson, Z. U. A. Warsi, and C. W, Mastin, Numerical Grid
Generation, Foundations and Applications (North-Holtand, Amsterdam,
1985).

4. Z. U. A. Warsi, Technical Report MSSU-EIRS-81-1, Mississippi State
University, 1981 (unpublished}.



